Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38343795

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

2.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
3.
Nat Methods ; 21(1): 110-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036854

RESUMO

Artificial intelligence-based protein structure prediction methods such as AlphaFold have revolutionized structural biology. The accuracies of these predictions vary, however, and they do not take into account ligands, covalent modifications or other environmental factors. Here, we evaluate how well AlphaFold predictions can be expected to describe the structure of a protein by comparing predictions directly with experimental crystallographic maps. In many cases, AlphaFold predictions matched experimental maps remarkably closely. In other cases, even very high-confidence predictions differed from experimental maps on a global scale through distortion and domain orientation, and on a local scale in backbone and side-chain conformation. We suggest considering AlphaFold predictions as exceptionally useful hypotheses. We further suggest that it is important to consider the confidence in prediction when interpreting AlphaFold predictions and to carry out experimental structure determination to verify structural details, particularly those that involve interactions not included in the prediction.


Assuntos
Inteligência Artificial , Processos Mentais , Cristalografia , Conformação Proteica
4.
ArXiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076521

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

5.
Acta Crystallogr D Struct Biol ; 79(Pt 12): 1071-1078, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921807

RESUMO

Model building and refinement, and the validation of their correctness, are very effective and reliable at local resolutions better than about 2.5 Šfor both crystallography and cryo-EM. However, at local resolutions worse than 2.5 Šboth the procedures and their validation break down and do not ensure reliably correct models. This is because in the broad density at lower resolution, critical features such as protein backbone carbonyl O atoms are not just less accurate but are not seen at all, and so peptide orientations are frequently wrongly fitted by 90-180°. This puts both backbone and side chains into the wrong local energy minimum, and they are then worsened rather than improved by further refinement into a valid but incorrect rotamer or Ramachandran region. On the positive side, new tools are being developed to locate this type of pernicious error in PDB depositions, such as CaBLAM, EMRinger, Pperp diagnosis of ribose puckers, and peptide flips in PDB-REDO, while interactive modeling in Coot or ISOLDE can help to fix many of them. Another positive trend is that artificial intelligence predictions such as those made by AlphaFold2 contribute additional evidence from large multiple sequence alignments, and in high-confidence parts they provide quite good starting models for loops, termini or whole domains with otherwise ambiguous density.


Assuntos
Inteligência Artificial , Proteínas , Modelos Moleculares , Proteínas/química , Cristalografia por Raios X , Peptídeos , Microscopia Crioeletrônica/métodos , Conformação Proteica
6.
Acta Crystallogr D Struct Biol ; 79(Pt 3): 234-244, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876433

RESUMO

Experimental structure determination can be accelerated with artificial intelligence (AI)-based structure-prediction methods such as AlphaFold. Here, an automatic procedure requiring only sequence information and crystallographic data is presented that uses AlphaFold predictions to produce an electron-density map and a structural model. Iterating through cycles of structure prediction is a key element of this procedure: a predicted model rebuilt in one cycle is used as a template for prediction in the next cycle. This procedure was applied to X-ray data for 215 structures released by the Protein Data Bank in a recent six-month period. In 87% of cases our procedure yielded a model with at least 50% of Cα atoms matching those in the deposited models within 2 Å. Predictions from the iterative template-guided prediction procedure were more accurate than those obtained without templates. It is concluded that AlphaFold predictions obtained based on sequence information alone are usually accurate enough to solve the crystallographic phase problem with molecular replacement, and a general strategy for macromolecular structure determination that includes AI-based prediction both as a starting point and as a method of model optimization is suggested.


Assuntos
Inteligência Artificial , Cristalografia , Bases de Dados de Proteínas , Modelos Estruturais
7.
Nat Methods ; 19(11): 1376-1382, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266465

RESUMO

Machine-learning prediction algorithms such as AlphaFold and RoseTTAFold can create remarkably accurate protein models, but these models usually have some regions that are predicted with low confidence or poor accuracy. We hypothesized that by implicitly including new experimental information such as a density map, a greater portion of a model could be predicted accurately, and that this might synergistically improve parts of the model that were not fully addressed by either machine learning or experiment alone. An iterative procedure was developed in which AlphaFold models are automatically rebuilt on the basis of experimental density maps and the rebuilt models are used as templates in new AlphaFold predictions. We show that including experimental information improves prediction beyond the improvement obtained with simple rebuilding guided by the experimental data. This procedure for AlphaFold modeling with density has been incorporated into an automated procedure for interpretation of crystallographic and electron cryo-microscopy maps.


Assuntos
Algoritmos , Proteínas , Modelos Moleculares , Microscopia Crioeletrônica/métodos , Proteínas/química , Aprendizado de Máquina , Conformação Proteica
8.
Protein Sci ; 31(1): 290-300, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779043

RESUMO

We have curated a high-quality, "best-parts" reference dataset of about 3 million protein residues in about 15,000 PDB-format coordinate files, each containing only residues with good electron density support for a physically acceptable model conformation. The resulting prefiltered data typically contain the entire core of each chain, in quite long continuous fragments. Each reference file is a single protein chain, and the total set of files were selected for low redundancy, high resolution, good MolProbity score, and other chain-level criteria. Then each residue was critically tested for adequate local map quality to firmly support its conformation, which must also be free of serious clashes or covalent-geometry outliers. The resulting Top2018 prefiltered datasets have been released on the Zenodo online web service and are freely available for all uses under a Creative Commons license. Currently, one dataset is residue filtered on main chain plus Cß atoms, and a second dataset is full-residue filtered; each is available at four different sequence-identity levels. Here, we illustrate both statistics and examples that show the beneficial consequences of residue-level filtering. That process is necessary because even the best of structures contain a few highly disordered local regions with poor density and low-confidence conformations that should not be included in reference data. Therefore, the open distribution of these very large, prefiltered reference datasets constitutes a notable advance for structural bioinformatics and the fields that depend upon it.


Assuntos
Algoritmos , Biologia Computacional , Bases de Dados de Proteínas , Modelos Moleculares , Proteínas/química , Software , Cristalografia por Raios X , Conformação Proteica , Proteínas/genética
10.
J Biol Chem ; 296: 100742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33957126

RESUMO

Ever since the first structures of proteins were determined in the 1960s, structural biologists have required methods to visualize biomolecular structures, both as an essential tool for their research and also to promote 3D comprehension of structural results by a wide audience of researchers, students, and the general public. In this review to celebrate the 50th anniversary of the Protein Data Bank, we present our own experiences in developing and applying methods of visualization and analysis to the ever-expanding archive of protein and nucleic acid structures in the worldwide Protein Data Bank. Across that timespan, Jane and David Richardson have concentrated on the organization inside and between the macromolecules, with ribbons to show the overall backbone "fold" and contact dots to show how the all-atom details fit together locally. David Goodsell has explored surface-based representations to present and explore biological subjects that range from molecules to cells. This review concludes with some ideas about the current challenges being addressed by the field of biomolecular visualization.


Assuntos
Bases de Dados de Proteínas/história , Modelos Moleculares , Biologia Molecular/história , História do Século XX , História do Século XXI , Humanos
11.
Nat Methods ; 18(2): 156-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33542514

RESUMO

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Cristalografia por Raios X , Conformação Proteica , Proteínas/química
12.
Biophys J ; 120(6): 1085-1096, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33460600

RESUMO

This work builds upon the record-breaking speed and generous immediate release of new experimental three-dimensional structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and complexes, which are crucial to downstream vaccine and drug development. We have surveyed those structures to catch the occasional errors that could be significant for those important uses and for which we were able to provide demonstrably higher-accuracy corrections. This process relied on new validation and correction methods such as CaBLAM and ISOLDE, which are not yet in routine use. We found such important and correctable problems in seven early SARS-CoV-2 structures. Two of the structures were soon superseded by new higher-resolution data, confirming our proposed changes. For the other five, we emailed the depositors a documented and illustrated report and encouraged them to make the model corrections themselves and use the new option at the worldwide Protein Data Bank for depositors to re-version their coordinates without changing the Protein Data Bank code. This quickly and easily makes the better-accuracy coordinates available to anyone who examines or downloads their structure, even before formal publication. The changes have involved sequence misalignments, incorrect RNA conformations near a bound inhibitor, incorrect metal ligands, and cis-trans or peptide flips that prevent good contact at interaction sites. These improvements have propagated into nearly all related structures done afterward. This process constitutes a new form of highly rigorous peer review, which is actually faster and more strict than standard publication review because it has access to coordinates and maps; journal peer review would also be strengthened by such access.


Assuntos
Revisão por Pares , SARS-CoV-2/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacologia , Anticorpos Antivirais , Domínio Catalítico , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Modelos Moleculares , Nucleocapsídeo/química , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Zinco/metabolismo
13.
Nat Methods ; 17(7): 663-664, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32616927
14.
Acta Crystallogr D Struct Biol ; 76(Pt 1): 51-62, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31909743

RESUMO

The refinement of biomolecular crystallographic models relies on geometric restraints to help to address the paucity of experimental data typical in these experiments. Limitations in these restraints can degrade the quality of the resulting atomic models. Here, an integration of the full all-atom Amber molecular-dynamics force field into Phenix crystallographic refinement is presented, which enables more complete modeling of biomolecular chemistry. The advantages of the force field include a carefully derived set of torsion-angle potentials, an extensive and flexible set of atom types, Lennard-Jones treatment of nonbonded interactions and a full treatment of crystalline electrostatics. The new combined method was tested against conventional geometry restraints for over 22 000 protein structures. Structures refined with the new method show substantially improved model quality. On average, Ramachandran and rotamer scores are somewhat better, clashscores and MolProbity scores are significantly improved, and the modeling of electrostatics leads to structures that exhibit more, and more correct, hydrogen bonds than those refined using traditional geometry restraints. In general it is found that model improvements are greatest at lower resolutions, prompting plans to add the Amber target function to real-space refinement for use in electron cryo-microscopy. This work opens the door to the future development of more advanced applications such as Amber-based ensemble refinement, quantum-mechanical representation of active sites and improved geometric restraints for simulated annealing.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Software , Microscopia Crioeletrônica/métodos , Bases de Dados de Proteínas , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica
15.
Protein Sci ; 29(1): 315-329, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31724275

RESUMO

The MolProbity web service provides macromolecular model validation to help correct local errors, for the structural biology community worldwide. Here we highlight new validation features, and also describe how we are fighting back against outside developments which compromise that mission. Our new tool called UnDowser analyzes the properties and context of clashing HOH "waters" to diagnose what they might actually represent; a dozen distinct scenarios are illustrated and described. We now treat alternate conformations more thoroughly, and switching to the Neo4j database (graphical rather than relational) enables cleaner, more comprehensive, and much larger reference datasets. A problematic outside change is that refinement software now increasingly restrains traditional validation criteria (geometry, clashes, rotamers, and even Ramachandran) in order to supplement the sparser experimental data at 3-4 Å resolutions typical of modern cryoEM. But unfortunately the broad density allows model optimization without fixing underlying problems, which means these structures often score much better on validation than they really are. CaBLAM, our tool designed for evaluating peptide orientations at lower resolutions, was described in the previous Tools issue, and here we demonstrate its effectiveness in diagnosing local errors even when other validation outliers have been artificially removed. Sophisticated hacking of the MolProbity server has required continual monitoring and various security measures short of restricting user access. The deprecation of Java applets now prevents KiNG interactive online display of outliers on the 3D model during a MolProbity run, but that important functionality has now been recaptured with a modified version of the Javascript NGL Viewer.


Assuntos
Biologia Computacional/métodos , Substâncias Macromoleculares/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Imageamento Tridimensional , Modelos Moleculares , Conformação Molecular , Software , Navegador
16.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 861-877, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588918

RESUMO

Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.


Assuntos
Automação/métodos , Substâncias Macromoleculares/química , Design de Software , Validação de Programas de Computador , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Molecular
17.
J Struct Biol ; 204(2): 301-312, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30107233

RESUMO

We find that the overall quite good methods used in the CryoEM Model Challenge could still benefit greatly from several strategies for improving local conformations. Our assessments primarily use validation criteria from the MolProbity web service. Those criteria include MolProbity's all-atom contact analysis, updated versions of standard conformational validations for protein and RNA, plus two recent additions: first, flags for cis-nonPro and twisted peptides, and second, the CaBLAM system for diagnosing secondary structure, validating Cα backbone, and validating adjacent peptide CO orientations in the context of the Cα trace. In general, automated ab initio building of starting models is quite good at backbone connectivity but often fails at local conformation or sequence register, especially at poorer than 3.5 Šresolution. However, we show that even if criteria (such as Ramachandran or rotamer) are explicitly restrained to improve refinement behavior and overall validation scores, automated optimization of a deposited structure seldom corrects specific misfittings that start in the wrong local minimum, but just hides them. Therefore, local problems should be identified, and as many as possible corrected, before starting refinement. Secondary structures are confusing at 3-4 Šbut can be better recognized at 6-8 Å. In future model challenges, specific steps being tested (such as segmentation) and the required documentation (such as PDB code of starting model) should each be explicitly defined, so competing methods on a given task can be meaningfully compared. Individual local examples are presented here, to understand what local mistakes and corrections look like in 3D, how they probably arise, and what possible improvements to methodology might help avoid them. At these resolutions, both structural biologists and end-users need meaningful estimates of local uncertainty, perhaps through explicit ensembles. Fitting problems can best be diagnosed by validation that spans multiple residues; CaBLAM is such a multi-residue tool, and its effectiveness is demonstrated.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas/química , Proteínas/metabolismo , Bases de Dados de Proteínas , Conformação Proteica
18.
Acta Crystallogr D Struct Biol ; 74(Pt 2): 132-142, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533239

RESUMO

Traditionally, validation was considered to be a final gatekeeping function, but refinement is smoother and results are better if model validation actively guides corrections throughout structure solution. This shifts emphasis from global to local measures: primarily geometry, conformations and sterics. A fit into the wrong local minimum conformation usually produces outliers in multiple measures. Moving to the right local minimum should be prioritized, rather than small shifts across arbitrary borderlines. Steric criteria work best with all explicit H atoms. `Backrub' motions should be used for side chains and `P-perp' diagnostics to correct ribose puckers. A `water' may actually be an ion, a relic of misfitting or an unmodeled alternate. Beware of wishful thinking in modeling ligands. At high resolution, internally consistent alternate conformations should be modeled and geometry in poor density should not be downweighted. At low resolution, CaBLAM should be used to diagnose protein secondary structure and ERRASER to correct RNA backbone. All atoms should not be forced inside density, beware of sequence misalignment, and very rare conformations such as cis-non-Pro peptides should be avoided. Automation continues to improve, but the crystallographer still must look at each outlier, in the context of density, and correct most of them. For the valid few with unambiguous density and something that is holding them in place, a functional reason should be sought. The expectation is a few outliers, not zero.


Assuntos
Cristalografia por Raios X/métodos , Modelos Moleculares , Estudos de Validação como Assunto , Métodos , Proteínas/química , RNA/química
19.
Protein Sci ; 27(1): 293-315, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29067766

RESUMO

This paper describes the current update on macromolecular model validation services that are provided at the MolProbity website, emphasizing changes and additions since the previous review in 2010. There have been many infrastructure improvements, including rewrite of previous Java utilities to now use existing or newly written Python utilities in the open-source CCTBX portion of the Phenix software system. This improves long-term maintainability and enhances the thorough integration of MolProbity-style validation within Phenix. There is now a complete MolProbity mirror site at http://molprobity.manchester.ac.uk. GitHub serves our open-source code, reference datasets, and the resulting multi-dimensional distributions that define most validation criteria. Coordinate output after Asn/Gln/His "flip" correction is now more idealized, since the post-refinement step has apparently often been skipped in the past. Two distinct sets of heavy-atom-to-hydrogen distances and accompanying van der Waals radii have been researched and improved in accuracy, one for the electron-cloud-center positions suitable for X-ray crystallography and one for nuclear positions. New validations include messages at input about problem-causing format irregularities, updates of Ramachandran and rotamer criteria from the million quality-filtered residues in a new reference dataset, the CaBLAM Cα-CO virtual-angle analysis of backbone and secondary structure for cryoEM or low-resolution X-ray, and flagging of the very rare cis-nonProline and twisted peptides which have recently been greatly overused. Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by MolProbity's unique all-atom clashscore.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Linguagens de Programação , Proteínas/química , Proteínas/genética
20.
Acta Crystallogr D Struct Biol ; 73(Pt 10): 852-859, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994414

RESUMO

Hoogsteen base pairs are seen in DNA crystal structures, but only rarely. This study tests whether Hoogsteens or other syn purines are either under-modeled or over-modeled, which are known problems for rare conformations. Candidate purines needing a syn/anti 180° flip were identified by diagnostic patterns of difference electron-density peaks. Manual inspection narrowed 105 flip candidates to 20 convincing cases, all at ≤2.7 Šresolution. Rebuilding and refinement confirmed that 14 of these were authentic purine flips. Seven examples are modeled as Watson-Crick base pairs but should be Hoogsteens (commonest at duplex termini), and three had the opposite issue. Syn/anti flips were also needed for some single-stranded purines. Five of the 20 convincing cases arose from an unmodeled alternate duplex running in the opposite direction. These are in semi-palindromic DNA sequences bound by a homodimeric protein and show flipped-purine-like difference peaks at residues where the palindrome is imperfect. This study documents types of incorrect modeling which are worth avoiding. However, the primary conclusions are that such mistakes are infrequent, the bias towards fitting anti purines is very slight, and the occurrence rate of Hoogsteen base pairs in DNA crystal structures remains unchanged from earlier estimates at ∼0.3%.


Assuntos
DNA/química , Purinas/química , Pareamento de Bases , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...